
Secure Account Management
Services in Go
By Florian Harwöck at Gopher Linz #1

2019-01-23

Florian Harwöck
SE-Student HTL Leonding

Gopher Since: 2016

I love:

★ Open Source
★ Security
★ System architecture (“Cloud

Native”)

Free time:

★ Badminton Coach for the youth
team & kids at ABV Wels

★ Party!

Contact me: https://harwoeck.com

But let’s talk about why we are here

My diploma thesis “Building a secure and scalable digital
assets exchange”

Security:

1) Transactions
2) Currency-Wallets (the “storage” for the digital assets)
3) User Accounts

Scalability:

Topic for another day ;)

Introduce key concepts
involved into designing our
secure “cloud-native”
account management
microservice

Introduce key concepts
involved into designing our
secure “cloud-native” account
management microservice

Secure = Cryptographic tricks + Hashicorp Vault

“Cloud-native” = Go (Obviously) + Containerized
+ GRPC + Envoy + etcd + Cockroachdb

The 3 key parts of this talk ...

★ API design
○ Introduction/ Showcase of GRPC

■ Demo
★ Security

○ Password-Storage
■ How our microservice stores passwords
■ How and why we deny 550 million passwords

○ User data (PII) protection
■ Cryptographic tricks

★ Go
○ Benefits in general
○ Benefits specifically in this type of application

Before we talk
about API Design
let’s see the
architecture

Architecture

GRPC Google Remote Procedure Call

Introduction to

● High performance RPC framework

● Any environment. Support for almost all widely used

languages

● Efficient way to connect microservices

● Open Source

Example of GRPC Service

● Simple unambiguous description of services and their
capabilities

● Strongly typed! :)

syntax = "proto3";
package um;

service Um {
 rpc Login(LoginRequest) returns (LoginResponse) {}
}

message LoginRequest {
 string email_address = 1;
 string password = 2;
}

message LoginResponse {
 string user_id = 1;
 string session_token = 2;
}

It’s a Go Meetup!!
Show us Go Code

Critic on GRPC

● GRPC has 16 predefined status codes

// EmailResendVerification resends the email containing the verification
// token, used to verify the email in question.
//
// Possible exceptions:
// * InvalidArgument - The format of the token is invalid. Should be 64
// bytes encoded with base64, resulting in 88 characters (already
// including padding).
// * Unauthenticated - The provided token couldn't be found in our database
// or failed the cryptographic checks.
// * ResourceExhausted - Token used too often. Wait at least 1h. Then try
// again.
// * Unavailable - Try again
// * Internal
rpc EmailResendVerification(EmailResendVerificationRequest) returns
(google.protobuf.Empty) {}

Let’s talk security

I’m not a studied
cryptographer/ security

expert so do your own
research too.

Security Goals

● Strong user authentication
○ Password Protection
○ Deny weak, known passwords

● PII data confidentiality
● Make persistent data useless (full database leak should have

no effect)
● Don’t limit usability/ scalability/ maintainability
● Verify our suggestions

About
Cryptography in
Go

Thanks oogle!

● They invested heavily in this!
● Not many languages provide that many algorithms,

primitives and protocols in the std-lib
● Widely used and (till now) without *big* security issues

Really good performance

● Heavily optimized by Cloudflare and Google itself
● Lot of the cryptographic primitives are written in GoASM

How our microservice stores
passwords

Brief fresh-up
first!

Password hashing basics

● User passwords get hashed using cryptographic hash
functions
hash("user password") =

2989961bb41d694cc5ee6e79174455082b591606

● Because lots of different users may use the same password,
each user gets his own random salt
hash("user password" + randomSalt) =

8f8960de943473e4200c44aa57a2b4047097b101

Don’t MD5/SHA1/SHA2 hash your
passwords (even with salts).

And yes, these things happen:

unsalted MD5:
Last.fm (43M, 2012)

salted/ unsalted SHA1:
MySpace (360M, 2008)
Dropbox (70M, 2012)
LinkedIn (160M, 2016)

Encrypted with a single 3DES key in ECB mode:
Adobe (150M, 2013)

The “funny” thing about ECB

The Best of Password Security 2018 goes to
an Austrian company ...

Our friends at T-Mobile ...

Since then: #amazinglygood

Credits: Stefan Hager (https://twitter.com/khae/status/983431097248821248)

Why am I telling you all this ...

Because it would be *easy* to do it right (especially for you Gophers)

1. Generate cryptographically secure random salts
// import "crypto/rand"
salt := make([]byte, 32)
_, err := io.ReadFull(rand.Reader, salt)

2. Use one of the currently recommended KDFs
// import "golang.org/x/crypto/argon2"
password := []byte("user password")
hash := argon2.IDKey(password, salt, 1, 32*1024, 4, 32)

3. Encrypt hash and salt
4. Store it

FINISHED!

Verification is also simple ...

● Just calculate the hash again and do a (constant-time)
comparison with the saved value in your database

password := []byte("user password")

var (
 salt = saltFromDB()
 correctHash = hashFromDB()
)

hashAttempt := argon2.IDKey(password, salt, 1, 32*1024, 4, 32)

if subtle.ConstantTimeCompare(correctHash, hashAttempt) == 1 {
// ok

}

A short note about these “KDF”s

● KDF = Key Derivation Function
● Fairly simplified: Like normal hashes, but for passwords
● Currently recommended (by OWASP):

○ PBKDF2 (Use if FIPS certification is needed)
pbkdf2.Key(password, salt, 4096, 32, sha256.New)

○ Bcrypt/ Scrypt
bcrypt.GenerateFromPassword(password, bcrypt.DefaultCost)
scrypt.Key(password, salt, 32768, 8, 1, 32)

○ Argon2
argon2.IDKey(password, salt, 1, 64*1024, 4, 32)

More information about password
storage (Shameless self promotion)

★ Search online for “Password and Credential Management in
2018”

★ Got featured from Medium in “Cyber Security” and
distributed by few security newsletter -> seems it’s worth
the read
○ 12K reads
○ 1,5K claps from 220+ people

How and why we deny 550 million
passwords

Who has heard
from
HaveIBeenPwned?

HaveIBeenPwned (HIBP)

● Data-breach collection service
● Allows you to check if your personal data was leaked during

any hack (email address, passwords, etc.)
● Operated by Troy Hunt

○ Microsoft Regional Director
○ Microsoft MVP
○ International top speaker on web security

● Collected over 550 Million unique passwords from data
breaches

How does it work?

Password collection can be:

1. A public API operated by Troy Hunt and Cloudflare
a. You will hash your user’s password with SHA1 and send

a fraction of the hash to the service (k-anonymity)
SHA1(“password”) = 5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8
api.pwnedpasswords.com/range/5baa6

Or you download all the SHA1 hashes

It’s not easy to search a 35GB .txt file

● Troy Hunt recommends using something like Azure
TableStorage, Google BigTable, etc. for querying with low
latencies

● Problem: I don’t like proprietary solutions
● I like Open Source.
● Therefore I built it! :)

You can find it own Github soon

github.com/harwoeck/hibpoffline

Why are we even doing this?

● Password reuse is common, although extremely risky
● Most people aren’t aware of the potential impact
● Hackers take advantage reused credentials

○ The collect your password from a breach at service A
○ They use your email and password to login to service B

● NIST Guidance (SP 800-63-3: Digital Identity Guidelines)

User data (PII) protection

Hashicorp Vault

● Extremely secure and highly reviewed open-source secretes
management software. One of the “golden standards”

● Biggest enterprises rely on it to safeguard their production
secrets

● Provides Encryption-as-a-Service capabilities

Hashicorp builts (almost) all their
tools with Go

It’s a Go Meetup!!
Show us Go Code

package vault

type Vault struct {
 client *api.Logical
}

func New(address, token string) (*Vault, error) {
 config := api.DefaultConfig()
 config.ConfigureTLS(&api.TLSConfig{
 // your certs
 })
 config.Address = address

 client, err := api.NewClient(config)
 if err != nil {
 return nil, err
 }
 client.SetToken(token)

 // return vault instance
 return &Vault{
 client: client.Logical(),
 }, nil
}

Provided by Hashicorp

Encrypt Helper

func (v *Vault) Encrypt(keyRing, plaintext string) (string, error) {
secret, err := v.client.Write("transit/encrypt/"+keyRing,

map[string]interface{}{
 "plaintext": plaintext,
 })

if err != nil {
 return "", err
 }

 ciphertext, ok := secret.Data["ciphertext"].(string)
 if !ok {
 return "", errors.New("vault: unable to get ciphertext during
encryption")
 }

return ciphertext, nil
}

Decrypt Helper

func (v *Vault) Decrypt(keyRing string, ciphertext string) (string, error) {
plain, err := v.client.Write("transit/decrypt/"+keyRing,

map[string]interface{}{
 "ciphertext": ciphertext,
 })

if err != nil {
 return "", err
 }

plaintext, ok := plain.Data["plaintext"].(string)
 if !ok {
 return "", errors.New("vault: unable to get plaintext during
decryption")
 }

return plaintext, nil
}

Vault-Helper Usage

v, _ := vault.New("localhost:8080", "our-access-token")
passwordKeyRing = "password"

// During registration
cipherText, _ := v.Encrypt(passwordKeyRing, "LrEw014lTKgUpc/F30Ytlg==")
storePasswordInDB(cipherText)

// On Login
password := loadPasswordFormDB()

fmt.Println(password)
// vault:v1:cZNHVx+sxdMErXRSuDa1q/pz49fXTn1PScKfhf+PIZPvy8xKfkytpwKcbC0fF2U=

password, err = v.Decrypt(passwordKeyRing, password)
if err != nil {
 log(err)
 return ErrInternalServerError
}

fmt.Println(password)
// LrEw014lTKgUpc/F30Ytlg==

Do we trust Vault?

● Definition:
“In cryptographic systems with hierarchical structure, a
trust anchor is an authoritative entity for which trust is
assumed and not derived.”

● Hashicorp Vault is our trust anchor

Server uses
Vault to encrypt
data

User data is
stored securely
(encrypted)

Encrypt everything

● Introduce “clearance level” and encrypt in groups

ID EMAIL PWD FIRSTNAME LASTNAME ADDRESS ZIPCODE PHONENUMBER

100 florian@harwoe
ck.at

LrEw01GOXZMm2p0Ui2I4Qv
vbHbOgs1fudIVSMGCxHIHM
iBu3FjgWNsKjQUY3LSYa4l
aV4c24TKgUpc/F30Ytlg==

Florian Harwöck Wunderstr.
13

4600 +43 676 6969084

ID PWD CLEARANCE_L1: string CLEARANCE_L2: string

100 ENCRYPTED(LrEw01GO
XZMm2p0Ui2I4QvvbHb
Ogs1fudIVSMGCxHIHM
iBu3FjgWNsKjQUY3LS
Ya4laV4c24TKgUpc/F
30Ytlg==)

ENCRYPTED({
 “email”: “florian@harwoeck.at”
 “firstname”: “Florian”,
 “lastname”: “Harwöck”
})

ENCRYPTED({
 “address”: “Wunderstr. 13”,
 “zipcode”: 4600,
 “phonenumber”: “+43 676 6969084”
})

● Problem: How to do a user login? (with email + password pair)

Who has heard of
the concept of
“Blind-Indexing”?

Blind-Indexing

● Works by calculating a keyed MAC of the email address
○ The key is only known by our server software

● Use a KDF or a keyed hash algorithm: HMAC-SHA2, KMAC,
Blake2b
h, _ := blake2b.New512(key)
h.Write([]byte("florian@harwoeck.at"))
bidx := h.Sum(nil)

ID EMAIL_BIDX: string PWD CLEARANCE_L1: string CLEARANCE_L2: string

100 OC3T1XZXA6p09pZ60eeAYpOPRgC8
1wSeBqffMCaMdM1XVbzTY+0ljCmz
PHVU1roh31+Bl0BWauQPz9YbsF4m
9g==

ENCRYPTED(LrEw01GOXZMm2p0
Ui2I4QvvbHbOgs1fudIVSMGCx
HIHMiBu3FjgWNsKjQUY3LSYa4
laV4c24TKgUpc/F30Ytlg==)

ENCRYPTED({
 “email”: “florian@harwoeck.at”
 “firstname”: “Florian”,
 “lastname”: “Harwöck”
})

ENCRYPTED({
 “address”: “Wunderstr. 13”,
 “zipcode”: 4600,
 “phonenumber”: “+43 676 6969084”
})

● You could get keyed MACs from Vault -> Trust Anchor, but it
hurts performance

 ID SECRET SALT [Split to 3 parts]

Concept also applies to other secrets:
example: Session Tokens
Q6Z...2Xw f3U...rwu Gxq...Wh7 [Generate 96 random bytes - 3x32]

ID_BLIND_IDX TOKEN_INFO

YZi0f+c9r/L7SKkE+in+etStNCtNe
XYqL1yrY2c8jJDdVUtwX2B5hSXoUt
Z9Y9arpM9a+Q/apECcAgxBR+rGLw=
=

ENCRYPTED({
 “hash”: “gcWEjZTf0j6uZNMnMC2kcRAR1CZxPzFOpKEwLOfc7TYybDqyXjEoe6+0bNUsOYOu9PePCUYF7JHvLWEv+rF+Eg==”
 “salt”: “3kHRkJctunjNrz5KmbUG2hBFhJR/ptiFNnUzYJTnISQ=”
})

● Next time a user sends the session token you do
1. Split it to ID and SECRET parts.
2. Use ID to calculate blind index and search associated token_info
3. Decrypt token_info
4. Hash SECRET part provided by user with salt from DB and compare to hash

 TOKEN HASH

TOKEN = ID + SECRET
HASH = MAC(SECRET, SALT)

Things we discussed here should
obviously only be your last defence

Putting that all
together we get

Goals vs Solutions

● Strong user authentication
○ Password Protection ⇒ Strong, modern KDF
○ Deny weak, known passwords ⇒ hibpoffline

● PII data confidentiality ⇒ content encryption
● Make persistent data useless ⇒ each field in the database:

either encrypted or blind index (except ids)
● Don’t limit usability/ scalability/ maintainability ⇒ blind

indexing and hashicorp vault
● Kerckhoffs’s Principle ⇒ share and verify gathered

knowledge

So we did we go with Go?

Benefits using Go ...

★ Go is open source by nature (Probably every bigger Go
project is hosted on Github)

★ It’s fun to develop
★ Great community and culture
★ Simple and non-magical
★ Tech is top (really fast, easy to use concurrency, free

cross-platform, garbage collected)
★ Godoc (std lib documentation is absolutely great)
★ One “subconscious” way of doing things
★ Cloud native language is Go

Additional benefits in this project

● Most pieces of our tech stack are already written in Go or
provide first class support
○ GRPC, Vault, etcd, CockroachDB, …

● We could leverage the really good cryptographic libs from
Go itself and didn’t need to call C libraries like OpenSSL/
BoringSSL/ Libsodium/ etc.

Conclusion
… or what to remember for
your project

Remember for your own project

● GRPC can make your life simpler and more efficient
● HIBP (or hibpoffline) can help improve your user’s security
● Cryptography can be powerful, if you use it correctly

○ Get experts or at least someone who knows the stuff
○ Your user’s data can be stored more secure using things

like Blind Indexing or Hashicorp EaaS
● Go helps you in both areas

○ Really good GRPC support
○ Extensive cryptographic libraries

● Your DevSecOps feel much safer knowing you finally
implemented the missing AirBag

Q&A

*Unfortunately there was no Helicopter raising
his hand. Forgive me

*

Thanks for
listening.

Please don’t forget to give me
feedback later

Google’s Protocol Buffers

● Flexible, efficient, automated mechanism for serializing
structured data

● “Think XML, but smaller, faster, and simpler”
● Define structure once, then use generated source code
● Updates to data structure don’t break compatibility to

deployed programs

syntax = "proto3";

message LoginRequest {
 string email_address = 1;
 string password = 2;
}

message LoginResponse {
 string user_id = 1;
 string session_token = 2;
}

