Secure Account Management
Services in Go

By Florian Harwock at Gopher Linz #1 g EQEHERS

2019-01-23

Florian Harwock
SE-Student HTL Leonding

Gopher Since: 2016
| love:

% Open Source

% Security
% System architecture (“Cloud

Native”)

Free time:

% Badminton Coach for the youth
team & kids at ABV Wels

% Party!

Contact me: https://harwoeck.com

But let’s talk about why we are here

My diploma thesis “Building a secure and scalable digital
assets exchange”

Security:

1) Transactions
2) Currency-Wallets (the “storage” for the digital assets)

3) UserAccounts @

Scalability:

Topic for another day ;)

Introduce key concepts
involved into designing our
secure “cloud-native”
account management
microservice

MUCH|BUZZWORDS

-

SUCHIDIGITAISVERY/WOW:!

Introduce key concepts
involved into designing our
secure “cloud-native” account
management microservice

Secure = Cryptographic tricks + Hashicorp Vault

"Cloud-native” = Go (Obviously) + Containerized
+ GRPC * Envoy * etcd * Cockroachdb

The 3 key parts of this talk ...

% APl design

o Introduction/ Showcase of GRPC
m Demo

% Security

o Password-Storage
m How our microservice stores passwords
m How and why we deny 550 million passwords

o User data (PIl) protection
m Cryptographic tricks

* Go

o Benefitsin general
o Benefits specifically in this type of application

Before we talk
about API Design
let’s see the
architecture

Architecture

LOAD BALANCER
[Envoy, Istio]

SERVICE-
CONSUMER

G RPC Google Remote Procedure Call

Introductionto {5 P[5

e High performance RPC framework

e Any environment. Support for almost all widely used
languages

e Efficient way to connect microservices

e Open Source ¢

Example of GRPC Service

e Simple unambiguous description of services and their
capabilities
e Strongly typed! :)

syntax "proto3”
package um

service Um
rpc Login(LoginRequest) returns (LoginResponse

message LoginRequest
string email_address 1
string password 2

message LoginResponse
string user_id 1
string session_token 2

It’'s a Go Meetup!!
Show us Go Code '@'

OH MIGHTY IIEMIi GIIIIS

"w*vwvm\

_AY .
PlEASE PlIEASE LET, THIS ,
| m Mzmayensraiornsi

Critic on GRPC

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

GRPC has 16 predefined status codes

EmailResendVerification resends the email containing the verification
token, used to verify the email in question.

Possible exceptions:

* InvalidArgument - The format of the token is invalid. Should be 64
bytes encoded with base64, resulting in 88 characters (already
including padding).

* Unauthenticated - The provided token couldn't be found in our database
or failed the cryptographic checks.

* ResourceExhausted - Token used too often. Wait at least 1h. Then try
again.

* Unavailable - Try again

* Internal

rpc EmailResendVerification(EmailResendVerificationRequest) returns
(google.protobuf.Empty) {}

Let’s talk security

I'm not a studied
cryptographer/ security
expert so do your own
research too.

Security Goals

e Strong user authentication
o Password Protection
o Deny weak, known passwords

e PIll data confidentiality

e Make persistent data useless (full database leak should have
no effect)

e Don’t limit usability/ scalability/ maintainability

e Verify our suggestions

About
Cryptography in
Go

Thanks Google!

e Theyinvested heavily in this!

e Not many languages provide that many algorithms,
primitives and protocols in the std-lib

e Widely used and (till now) without *big* security issues

B aes i rand | acme i cryptobyte Bl otr i tea

il cipher i rcd i argon2 B curve25519 i pbkdf2 i twofish
il des B rsa Il berypt i ed25519 Bl pkcs12 i} xtea
I dsa B shal i blake2b i hkdf I poly1305 i xts

il ecdsa i sha256 | blake2s | internal i ripemd160

il elliptic im sha512 i@ blowfish B md4 | salsa20

B hmac i} subtle B bn256 B nacl B scrypt

| internal i ts il cast5 i ocsp i sha3

B8 md5 m X509 i chacha20poly1305 i} openpgp Bl ssh

Really good performance

e Heavily optimized by Cloudflare and Google itself
e Lot of the cryptographic primitives are written in GoOASM

#include "textflag.h"

// func encryptBlockAsm(nr int, xk *uint32, dst, src *byte)
TEXT -encryptBlockAsm(SB),NOSPLIT, $0
MOVQ nr+0(FP), CX
MOVQ xk+8(FP), AX
MOVQ dst+16(FP), DX
MOVQ src+24(FP), BX
MOVUPS B(AX), X1
MOVUPS ©(BX), X
ADDQ $16, AX
PXOR X1, X©
SuBQ $12, CX
JE Lenc196
JB Lenci28
Lenc256:
MOVUPS 0(AX), X1
AESENC X1, X0
MOVUPS 16(AX), X1
AESENC X1, X0
ADDQ $32, AX

How our microservice stores
passwords

Brief fresh-up -]
first!

Password hashing basics

e User passwords get hashed using cryptographic hash

functions
hash("user password") =

2989961bb41d694cc5ee6€79174455082b591606

e Because lots of different users may use the same password,

each user gets his own random salt
hash("user password" + randomSalt) =

8f8960de943473e4200c44aa57a2b4047097b101

Don’'t MD5/SHA21/SHA2 hash your
passwords (even with salts).

I l ! :
o
N '\

And yes, these things happen:

unsalted MD5:
Last.fm (43M, 2012)

salted/ unsalted SHA1:
MySpace (360M, 2008)
Dropbox (70M, 2012)
LinkedIn (160M, 2016)

Encrypted with a single 3DES key in ECB mode:
Adobe (150M, 2013)

The “funny” thing about ECB

Original image Encrypted using ECB mode Modes other than ECB result in
pseudo-randomness

The Best of Password Security 2018 goes to
an Austrian company ... *

4
e

]]
Our friends at T-Mobile ...
r Claudia Pellegrino @c_pellegrino - 3d
NAane T Mahila Aviatria in fant atAara AlictAarmara/
@ T-Mobile Austria @

@tmobileat

Claudia Pellegrino @c_pellegrino - 2d

Re
ch ‘ @ T-Mobile Austria @ @tmobileat - 2d
¢

Hi @c_pellegrino, | really do not get why this is
ag a problem. You have so many passwords for
D& evey app, for every mail-account and so on. We

- e o - a

T-Mobile Austria @ @tmobileat - 1d

@Korni22 What if this doesn't happen because
our security is amazingly good? *Kathe

Q) 369 11527 C) 644 W,

’RIVACY AND SECURITY

Did T-Mobile Austria Really Just Admit It Stores
Customer Passwords in Plaintext?

.

TEOE . CYRERSECURITY \ X lm
T-Mobile Austria is working to

|h|p
securlty measure ‘as quickly as poss'®

Apr 10, 2018, 12:08pm EDT -E.'ne kurze F

<ellbrandom |

PCMag UK | News & Analysi

M
T-Moblle Austrla is OK with 2.
Storing Passwords s«

T ext T-Mobile Austria stores passwords as
plain text, Outlook gets message
BY MICHAEL KAN 7 APR 2018, 1:22 A.M. crypto and more

Warning: Contains extreme stupidity

By lain Thomson in San Francisco 7 Apr 2018 at 11:36 24() SHARE v

Since then: #amazinglygood

Credits: Stefan Hager (https://twitter.com/khae/status/983431097248821248)

Why am | telling you all this ...

Because it would be *easy* to do it right (especially for you Gophers)

1. Generate cryptographically secure random salts

// import "crypto/rand"
salt := make([]byte, 32)
_, err := io.ReadFull(rand.Reader, salt)

2. Useone of the currently recommended KDFs

// import "golang.org/x/crypto/argon2”
password := []byte("user password")
hash := argon2.IDKey(password, salt, 1, 32x1024, 4, 32)

3. Encrypt hash and salt
4. Storeit

FINISHED!

Verification is also simple ...

e Just calculate the hash again and do a (constant-time)
comparison with the saved value in your database

password := []byte("user password")
var (
salt = saltFromDB()
correctHash = hashFromDB()

)

hashAttempt := argon2.IDKey(password, salt, 1, 32x1024, 4, 32)

if subtle.ConstantTimeCompare(correctHash, hashAttempt) == 1 {
/1 ok
}

A short note about these “KDF"s

e KDF = Key Derivation Function
e Fairly simplified: Like normal hashes, but for passwords
e Currently recommended (by OWASP):

O PBKDF2 (useif FIPS certification is needed)
pbkdf2.Key(password, salt, 4096, 32, sha256.New)

o Bcrypt/ Scrypt
bcrypt.GenerateFromPassword(password, bcrypt.DefaultCost)
scrypt.Key(password, salt, 32768, 8, 1, 32)

o Argon2

argon2.IDKey(password, salt, 1, 64x1024, 4, 32)

More information about password
storage (Shameless self promotion)

% Search online for “Password and Credential Management in
by -4|=
2018 Password and Credential Management in 2018 — Florian Harwock ...

https://medium.com/.../password-and-credential-management-in-2018-56f43669d588 v
Aug 15, 2018 - Password and Credential Management in 2018. State of the art security for the most
valuable secrets. Go to the profile of Florian Harwdck.

% Got featured from Medium in “Cyber Security” and
distributed by few security newsletter -> seems it’s worth

the read
o 12Kreads
o 1,5Kclaps @ from 220+ people

How and why we deny 550 million
passwords

Who has heard
from
HavelBeenPwned?

HavelBeenPwned (HIBP)

e Data-breach collection service
e Allows you to check if your personal data was leaked during
any hack (email address, passwords, etc.)
e Operated by Troy Hunt
o Microsoft Regional Director
o Microsoft MVP
o International top speaker on web security
e Collected over 550 Million unique passwords from data
breaches

How does it work?
Y

password e
User > Your service €«“—>| password
Yes/no collection

N

Password collection can be:

1. Apublic APl operated by Troy Hunt and Cloudflare
a. You will hash your user’s password with SHA1 and send

a fraction of the hash to the service (k-anonymity)

S N N I oI« R 5 haa61e4c9b93f310682250b6cf8331b7ee68fd8
api.pwnedpasswords.com/range/HEER

1D72CD07550416C216D8AD296BF5COAE8ED: 10
1E2AAA439972480CEC7F16C795BBB429372:1
1E3687A61BFCE35F69B7408158101C8E414:1
1E4C9B93F3F0682250B6CF8331B7EE68FD8:3645804
1F2B668EBAABEF1C59E9EC6F82E3F3CD786:1
20597F5AC10A2F67701B4AD1D3A09F72250: 3

Or you download all the SHA1 hashes

Format File

SHA-1 Version 4
(ordered by prevalence)

Version 4
e (ordered by hash)

Version 4

e (ordered by prevalence)

Version 4
cloudfiare (ordered by hash)

Date

17 Jan 2019

17 Jan 2019

17 Jan 2019

17 Jan 2019

SHA-1 hash of 7-Zip file

59741e11e20a3fc4f29ae597972295dcb94cef39

d81c649cda9cddb398f2b93c629718e14b7f2686

2014695d9c4880aacb69be031alcc7c9eeedbcfb9

ee7199ee2a1d8f23dd346d5b1fb2255e1ed8de8a

It's not easy to search a 35GB .txt file

e Troy Hunt recommends using something like Azure

TableStorage, Google BigTable, etc. for querying with low
latencies

e Problem:|don’t like proprietary solutions
e |like Open Source.
e Therefore | builtit!:)

4 hibpoffline

O Query HavelBeenPwned locally

You can find it own Github soon

github.com/harwoeck/hibpoffline

High-performance Service for querying an offline copy of the HIBP database (a collection of 551 million breached i) passwords). Edit
Exists because private <+ = .

Manage topics

D 89 commits ¥ 1 branch © 0 releases 42 1 contributor &fs Apache-2.0
Branch: master v New pull request Create new file Upload files Find file Clone or download ¥
ﬂ harwoeck Update README.md Latest commit 497c959 4 days ago
B cmd/hibpoffline Move towards open source 6 days ago
B configs Further performance improvements 2 months ago
i docs/diagrams Move towards open source 6 days ago
B examples/client Update to new GRPC proto definition 2 months ago
B pkg Fix out-of-memory issue 6 days ago

® Go 92.3% ® Makefile 6.2% ® Dockerfile 1.5%
S

[E] CUNIRIDU HINWG.IHU AUU Ulayiaiis anu conecuieaunie Y uays ayv
[E) Dockerfile Move towards open source 6 days ago

LICENSE Create LICENSE 4 months ago
E) Makefile Add changes 7 days ago
B README.md Update README.md 4 days ago
E go.mod Further performance improvements 2 months ago
[go.sum Add diagrams and correct readme 9 days ago
[E hibpoffline.png Change readme and picture 4 months ago

README.md p

Why are we even doing this?

e Password reuse is common, although extremely risky
e Most people aren’t aware of the potential impact
e Hackers take advantage reused credentials
o The collect your password from a breach at service A
o They use your email and password to login to service B
e NIST Guidance (sp 800-63-3: Digital Identity Guidelines)

Qa v G| !

CREC @ https://www.nist.gov/itl/tig/projects/special-publication-800-63

Due to a lapse in government funding, the majority of this website is
not accessible until further notice. Learn more

NIST websites for programs using non-appropriated funds (NVLAP and
PSCR) or those that are excepted from the shutdown (such as NVD) will

o 5 D
continue to be available and updated.

User data (PIl) protection

nnnnnnnnn

e Extremely secure and highly reviewed open-source secretes
management software. One of the “golden standards”

e Biggest enterprises rely on it to safeguard their production
secrets

e Provides Encryption-as-a-Service capabilities

Unencrypted app data

|
v

Applications can send data to Vault
and have the data encrypted and
ent back to the application or AP| ? Vault EaaS
- b4
~~_| Encrypted app data !
B !

Vau |t Database

Hashicorp builts (almost) all their

tools with Go

A tool for secrets management, encryption as a service, and privileged access management https://www.vaultproject.io/

HCL 0.1%

vault go secrets
® Go 79.5% JavaScript 12.2% ® HTML 6.8% ® CSS 0.9% Shell 0.3%
consul nomad packer

Consul is a distributed, highly available, and data

center aware solution to connect and configure
applications across dynamic, distributed
infrastructure.

¥ 2.5k

@®co 147k

terraform

Terraform is a tool for building, changing, and
combining infrastructure safely and efficiently.
¥ 4.4

@®co 152k

Nomad is a flexible, enterprise-grade cluster

scheduler designed to easily integrate into existing

workflows. Nomad can run a diverse workload of
micro-service, batch, containerized and non-
contain...

@®co K42k Y813

vault
A tool for secrets management, encryption as a
service, and privileged access management

¥ 1.7k

@®co w112k

Other 0.2%
.

Packer is a tool for creating identical machine images
for multiple platforms from a single source
configuration.

®Go

vagrant

W 8.5k

¥ 2.3k

Vagrant is a tool for building and distributing
development environments.

@ Ruby

* 17.9k

¥ 3.6k

It’'s a Go Meetup!!
Show us Go Code '@'

package vault Provided by Hashicorp

type Vault struc
client *api. cal
h

func New(address, token string) (*Vault, error) {
config := api.DefaultConfig()
config.ConfigureTLS(&api.TLSConfig{
/] your certs
})

config.Address = address

client, err := api.NewClient(config)
if err !'= nil {

return nil, err
}

client.SetToken(token)

// return vault instance
return &Vault{

client: client.Logical(),
}, nil

Encrypt Helper

func (v *Vault) Encrypt(keyRing, plaintext string) (string, error) {
secret, err := v.client.Write("transit/encrypt/"+keyRing,
map[string]interface{}{
"plaintext”: plaintext,

})
if err != nil {
return "", err
}
ciphertext, ok := secret.Data["ciphertext"]. (string)
if lok {
return "", errors.New("vault: unable to get ciphertext during
encryption")
h

return ciphertext, nil

Decrypt Helper

func (v *Vault) Decrypt(keyRing string, ciphertext string) (string, error) {
plain, err := v.client.Write("transit/decrypt/"+keyRing,
map[string]interface{}{
"ciphertext"”: ciphertext,

})
if err != nil {
return "", err
}
plaintext, ok := plain.Data["plaintext"].(string)
if lok {
return "", errors.New("vault: unable to get plaintext during
decryption")
}

return plaintext, nil

Vault-Helper Usage

v, _ := vault.New("localhost:8080", "our-access-token")
passwordKeyRing = "password"

// During registration
cipherText, _ := v.Encrypt(passwordKeyRing, "LrEw0141TKgUpc/F30Ytlg==")
storePasswordInDB(cipherText)

// On Login
password := loadPasswordFormDB()

fmt.Println(password)
// vault:v1:cZNHVx+sxdMErXRSuDa1q/pz49fXTn1PScKfhf+PIZPvy8xKfkytpwKcbCOfF2U=

password, err = v.Decrypt(passwordKeyRing, password)
if err != nil {

log(err)

return ErrInternalServerError

}

fmt.Println(password)
// LrEw0141TKgUpc/F30Ytlg==

Do we trust Vault?

e Definition:
“In cryptographic systems with hierarchical structure, a
trust anchor is an authoritative entity for which trust is
assumed and not derived.”

e Hashicorp Vaultis our trust anchor

Server uses User datais
Vault to encrypt - stored securely
data (encrypted)

Encrypt everything

100 florian@harwoe | LrEw@1GOXZMm2p@Ui2I4Qv | Florian Harwock Wunderstr. 4600 +43 676 6969084
ck.at vbHbOgs1fudIVSMGCXHIHM 13
iBu3FjgWNsKjQuY3LSYa4l
aV4c24TKgUpc/F30Ytlg==

e Introduce “clearance level” and encryptin groups

100 ENCRYPTED (LrEw@1G0 | ENCRYPTED ({ ENCRYPTED ({
XZMm2peui214QvvbHb “email”: “florian@harwoeck.at” “address”: “Wunderstr. 13",
OgS1fUdIVSMGCXHIHM ,,f. . u 1 . n "_, = d ” o, 46@@
iBU3FjgWNsKjQUY3LS “Tirstname”: “Florian”, Jzpeode” - abdd, "
Ya4laV4c24TKgUpc/F lastname”: “Harwock phonenumber”: “+43 676 6969084
30Ytlg== }))

e Problem: How to do a user login? (with email + password pair)

Who has heard of
the concept of
“Blind-Indexing”? &

< -
Ko e

Blind-Indexing

e Works by calculating a keyed MAC of the email address
o The key is only known by our server software

e Use a KDF or a keyed hash algorithm: HMAC-SHA2, KMAC,
Blake2b

h, _ := blake2b.New512(key)
h.Write([]byte("florian@harwoeck.at"))
bidx := h.Sum(nil)

0C3T1X: 6pB9r eeAYpOPRgC8 ENCRYPTED ({
1wSeBqf, taM' KVbzTY+@1jCmz i “ .at” “address”

PHVUTrot. + 4BWauQPz9YbsF4m i j “fi ian”, “zipcode”:
9g== \/ c/F30Ytlg==) ock” “phonenumb

1) })

e You could get keyed MACs from Vault -> Trust Anchor, but it
hurts performance

Concept also applies to other secrets:
example: Session Tokens

YR (IR VRN STV OGN iV [Generate 96 random bytes - 3x32]
\)\)\ J
Y

1 1
ID SECRET SALT '[Split to 3 parts]
\ | J1
TOKEN HASH
TOKEN = ID + SECRET
HASH = MAC(SECRET, SALT)

YZi@f+ct L7S! rin+etStNCtNe ENCRYPTED ({
XYqL1lyrY. i cuVUthZBShSXoUt “hash”: “gc 6UZNMNMC2kcRAR1CZxPzFOpKEWLOfc7TYybDqyXjEoe6+BbNUsOYOu9PePCUYF7JHVLWEV+rF+Eg=="
Z9Y9a rvapECCAngm rGLw= “salt”: “3kH unjNrz5KmbUG2hBFhJR/ptiFNnUzYJTnISQ="

})

e Nexttime auser sends the session token you do
1. SplitittoID and SECRET parts.
2. Use D to calculate blind index and search associated token_info
3. Decrypttoken_info
4. Hash SECRET part provided by user with salt from DB and compare to hash

Things we discussed here should
obviously only be your last defence

Putting that all
together we get

Goals vs Solutions

e Strong user authentication
o Password Protection = Strong, modern KDF
o Deny weak, known passwords = hibpoffline

e Pll data confidentiality = content encryption

e Make persistent data useless = each field in the database:
either encrypted or blind index (except ids)

e Don’t limit usability/ scalability/ maintainability = blind
indexing and hashicorp vault

e Kerckhoffs’s Principle = share and verify gathered
knowledge

- -~
e o

So we did we go with Go? |-

- - FYAV VAT
Benefits using Go ... \.s.!
| S

* 2 b ¢ Ot

Go is open source by nature (Probably every bigger Go
project is hosted on Github)

It’s fun to develop

Great community and culture

Simple and non-magical

Tech is top (really fast, easy to use concurrency, free
cross-platform, garbage collected)

Godoc (std lib documentation is absolutely great)

One “subconscious” way of doing things

Cloud native language is Go

Additional benefits in this project

e Most pieces of our tech stack are already written in Go or
provide first class support
o GRPC, Vault, etcd, CockroachDB, ...

e We could leverage the really good cryptographic libs from
Go itself and didn’t need to call C libraries like OpenSSL/
BoringSSL/ Libsodium/ etc.

Conclusion

... or what to remember for
your project

Remember for your own project

e GRPC can make your life simpler and more efficient
e HIBP (or hibpoffline) can help improve your user’s security
e Cryptography can be powerful, if you use it correctly
o Get experts or at least someone who knows the stuff
o Your user’s data can be stored more secure using things
like Blind Indexing or Hashicorp Eaa$S
e Go helpsyouin both areas
o Really good GRPC support
o Extensive cryptographic libraries
e Your DevSecOps feel much safer knowing you finally
implemented the missing AirBag

*Unfortunately there was no Helicopter raising
his hand. Forgive me

Thanks for
listening.

Please don't forget to give me
feedback later

Google’s Protocol Buffers

e Flexible, efficient, automated mechanism for serializing
structured data

e “Think XML, but smaller, faster, and simpler”

e Define structure once, then use generated source code

e Updates to data structure don’t break compatibility to
deployed programs

syntax = "proto3";

message LoginRequest {
string email_address
string password = 2;

Il
—
-

}

message LoginResponse {
string user_id = 1;
string session_token

]
N

}

